INSTRUCTIONS FOR

 SPRAYER ADJUSTMENT
THE
 LOW VOLUME

CIMASpA

Loc. Molino Quaroni 27040 Montù Beccaria (PV) Telef. + 39.0385.246636-Fax +39.0385.246637
e-mail:info@cimaitalia.com
http://www.cimaitalia.com

FIRST SECTION
BASIC INFORMATION ON "LOW VOLUME" 1
Units of measure and codes 4

SECOND SECTION

DEFINITION OF ADJUSTMENT DATA 5
Width of the treatment " L " 5
Travel speed "V" 8
Work surface hourly covered "S" 10
Litres to be delivered per hectare "W" 10
Hourly delivery capacity "Q 11
Adjustment of the sprayer 11
Proportioning of the mixture 13
Practical adjustment example 17

\qquad

REMARKS

\qquad
\square
\qquad

1 BASIC INFORMATION ON "LOW VOLUME" 1

It is traditionally recognised that for the deployment of agro-chemicals, despite the evolution of equipment specific to this purpose, we've always had to utilise water as the means through which adequate coverage of the crop is obtained. Its "atomizing" into minute droplets is the only way to obtain a homogeneous distribution of small active principle quantities over vast vegetable crop surfaces The measuring unit for the diameter of the droplets obtained through this pulverising action is MICRON t corresponds to the one-millionth part of 1 millimetre.

1 MICRON $=1 \mathrm{~mm}$

The classic system used for the transformation of water, conventionally called "NORMAL VOLUME" consists of using strong pressure to force it through one or more jets of very minute diameter. By using this principle, all kinds of pumps are manufactured: knapsack pumps, pressure pumps and membrane or piston pumps, utilised in the production of spraying dusters and turbo-sprayers.

Based on the principle of the "Venturi tube", another spray system was developed. It consists in causing a very strong air current that is forced into a tube to then be released through a suitable narrowing throat
The water, without pressure, is brought to and forced through the centre of the throat where it is atomized through the action of the air velocity. The application of this principle is a binding and indispensable condition for the manufacturing of pneumatic sprayers.

Appropriate and specific technical tests have allowed examination of the considerable difference existing in the diameter of the droplets generated by these two "spray" systems. The "normal volume" (air assisted) shows up 85\% of the droplets with a diameter of 250/300 micron with the characteristic that this value cannot be reduced, even when the operating atmospheres are increased. The second system (pneumatic sprayers) creates a water mist in which 90% of the droplets show a much smaller diameter (normally, with correct adjustment, in the region of 100 micron).

This considerable difference is fundamental. Utilising the same volume of water, this allows pneumatic sprayers to cover a considerably larger area, compared with traditional pumps. In other words, sprayers can cover the same crop surface treated by normal volume machines, but with a much lesser quantity of water, in other words with a "LOW VOLUME" of water.

These informative notes end with summary statements on the salient points that characterize this treatment technique.

The purpose is solely that of emphasising certain normally disregarded aspects and to prompt considerations that will inevitably have to be explored in depth under more appropriate circumstances.

Having stated the above, it is advisable for the operator to consider the relationship linking the WORKING WIDTH, or the presence of plants growing to a marked foliage mass, and the TRAVEL SPEED in the definition of the HOURLY DELIVERY CAPACITY.

These two parameters have to integrate and maintain the delivery capacity within values that must guarantee adequate coverage within to the machine's functional specifications. In other words it would be opportune to focus attention on the principle of the value of the working width increasing as that of the travel speed diminishes and vice versa.

In the latter instance one must remember that, in order to obtain better results the speed must always be kept not too high.

Generally speaking therefore, it is advisable to select balanced conditions between the travel speed and the quantity of litres/hectare to be delivered.

The speed must be such as to allow penetration into the foliage mass and the volume of mixture to be distributed must adequately cover the whole surface of the plants' vegetation without causing dripping

Appropriate spraying for a low-volume treatment requires that the hourly delivery capacity should never be excessive. It follows therefore, that high travel speeds above the norm should be avoided. This condition would imply the utilisation of delivery capacities that the air speed would be unable to spray suitably: "The smaller the droplets, the more effective will be the treatment".

The performance outlined is obtained with the power take off (PTO) set at 540 RPM.
For good treatment results this condition MUST ALWAYS BE OBSERVED during the machine deployment. The utilisation with speeds between 500 and 620 RPM is permitted.

INTERVENTIONSTOMODIFYTHESTRUCTUREORTHEOPERATIONOFTHESPRAYERBY THE OWNER ANDIOR OPERATOR OF THE SPRAYER ARE NOT ALLOWED. ANY REPAIR SHALL BECARRIED OUT ATTHEDISTRIBUTORS OR ATTHE WORKSHOPS AUTHORIZED BY C.I.M.A. S.p.A., OTHERWISE EVERY WARRANTY RIGHT WILL BE LOST AND C.I.M.A S.p.A. WILL BE RELIEVED FROM ANY CONSEQUENT RESPONSIBILITY. HECTARE, according to the crop to be treated, REMAINS UNCHANGED, independently of the machine type deployed. This is drawn from the tables present on the products' packages and is dependent on the quantity of water utilised for "that specific crop surface in the preceding treatments.

The utilisation of the sprayer with the power take off (PTO) at 540 RPN guarantees the best result of the treatments. It is in any case admissible to use the unit at revs between 500 and 620 RPM.

"L"
1 LENGTH If with every pass, 2 rows are covered, distanced OFWORK by 2.50 meters, the working width to be considered (m) is: 2 rows times 2.50 metres ..
$=5 \mathrm{~m}$

2	"V" TRAVEL SPEED (km/h)	After having operated practically on the field, a travel speed 5.5 of Km / h is established \qquad $=5,5 \mathrm{~km} / \mathrm{h}$
3	"S" HOURLY SURFACE (ha/h)	The hectares that will be treated in an hour are calculated by multiplying the WORKING WIDTH "L" by the travel speed "V" divided by 10 $(\mathrm{L} \times \mathrm{V}): 10=(5 \mathrm{~m} \times 5,5 \mathrm{~km} / \mathrm{h}): 10$ \qquad $=2,75 \mathrm{ha} / \mathrm{h}$

"W"
"WITRES It is suggested that the treatment be carried out by utilising
PERHECTARES a quantity of mixture per hectare of $=200 \mathrm{I} / \mathrm{ha}$
(I/ha)

5 HOURLY The litres that the sprayer must spray in an hour of work, indispensable $\begin{array}{ll}\text { DELIVERY } & \text { for calibrating the machine, are calculated by multiplying the hourly work } \\ \text { CAPACITY } & \text { surface " } S \text { " by the value "W" }(2,75 \mathrm{ha} / \mathrm{h} \times 200 \mathrm{l} / \mathrm{ha})=\ldots=550 \mathrm{l} / \mathrm{h}\end{array}$ (I / h)

In the following example, a chemical in powder form is uses, with an
6 ADJUSTMENT operative setting of the working pressure at 1.5 atmospheres.
OF THE SPRAY In the DELIVERY CAPACITY TABLE, corresponding with the column relative SPRAYER to the pressure of 1.5 , select the delivery capacity value closest to 550 , in other words 562, to which POSITION 9 of the rotating discs corresponds. With this adjustment the litres per hectare (l/ha) actually distributed will correspond to $562 \mathrm{l} / \mathrm{h}: 2,75 \mathrm{ha} / \mathrm{h}=204 \mathrm{l} / \mathrm{ha}$.

From the treatments applied in the previous seasons, 3 kg of product were distributed per hectare
DOSAGE With the spraer the same quantity of chemical must be used, that
OFTHE will be distributed with the 204 litres of mixture used for the treatment of a MIXTURE hectare. The mixture must be prepared with 1.47 kg of agro-chemical for every 100 litres of water: ($3 \mathrm{~kg} / \mathrm{ha}: 204 \mathrm{l} / \mathrm{ha}$) $\times 100 \mathrm{l}=1.47 \mathrm{~kg}$ After having completed the intervention on the 9 hectares of the crop $204 \times 9=1,836$ litres of water and 27 kg of agro-chemical will have been distributed.

AT AN EVEN WATER VOLUME

TANKCAPACITY1000 Litres	MACHINE USED	SPRAY SYSTEM	$\begin{aligned} & \text { PRODUCT } \\ & \text { USED } \end{aligned}$	SURFACE TREATED	MIXTURE CONCENTRATION
	AIR ASSISTED	NORMAL VOLUME	Kg 3	1 ha	1 TIME OR NORMAL $=300 \mathrm{~g}$ every 100 litres
	PNEUMATIC SPRAYER	LOW VOLUME	Kg 9	3 ha	3 TIMES $=900 \mathrm{~g}$ every 100 litres
	PNEUMATIC SPRAYER	LOW VOLUME	Kg 12	4 ha	4 TIMES $=1200 \mathrm{~g}$ every 100 litres
	PNEUMATIC SPRAYER	LOW VOLUME	Kg 15	5 ha	5 TIMES $=1500 \mathrm{~g}$ every 100 litres
	PNEUMATIC SPRAYER	LOW Volume	Kg 24	8 ha	8 TIMES $=2400 \mathrm{~g}$ every 100 litres
	PNEUMATIC SPRAYER	LOW VOLUME	Kg 30	10 ha	10 TIMES = every 100 litres i

AT AN EVEN TREATED SURFACE

$\underset{\text { HECTARE }}{1}$	MACHINE USED	SPRAY SYSTEM	PRODUCT	SURFACE TREATED	MIXTURE CONCENTRATION
	AIR ASSISTED	NORMAL VOLUME	kg 3	1000 litres	1 TIME OR NORMAL $=300 \mathrm{~g}$ every 100 litres
	PNEUMATIC SPRAYER	LOW VOLUME		333 litres	3 VOLTE $=900 \mathrm{~g} \mathrm{every} 100$ litres
	PNEUMATIC SPRAYER	LOW VOLUME		250 litres	4 VOLTE $=1200 \mathrm{~g}$ every 100 litres
	PNEUMATIC SPRAYER	LOW VoLume		200 litres	5 VOLTE $=1500 \mathrm{~g}$ every 100 litres
	PNEUMATIC SPRAYER	LOW VOLUME		125 litres	8 VOLTE $=2400 \mathrm{~g}$ every 100 litres
	PNEUMATIC SPRAYER	LOW VoLume		100 litres	10 VOLTE $=3000 \mathrm{~g}$ every 100 litres

NORMAL VOLUME

Treatment of 1 hectare with 1000 litres of water and 3 kg of product

LOW VOLUME

Treatment of 1 hectare with 3 kg of product. The concentration of the mixture is selectable, according to the litres/hectare to be used

AIR-ASSISTED

1000 litres
Mixture concentration: 1 time or normal

PNEUMATICSPRAYER

AIR-ASSISTED

COVERAGE OF 4 HECTARES
1000 litres
with 12 kg of product
PNEUMATIC SPRAYER
1000 litres

Water used
4000 litres
4 loads

Mixture concentration: 1 time or normal
Mixture concentration: 4 times or quadruple

1.1 - UNIT OF MEASURE AND CODES

8 Practical adjustment example

A) Intervention with a sprayer (equipped with $\mathrm{N}+\mathrm{N}$ head, as an example) over 9 hectares of crop with rows set at 2.50 m , and in which 2 rows are covered at every pass.
B) For the treatments carried out during the previous seasons, with a normal-volume, traditiona machine, 800 litres of water and 3 kg of chemical were distributed for every hectare, preparing a mixture with doses of 375 g of product for every 100 litres
The interventions used to call for the utilisation of 7,200 litres of water and 27 kg of agro-chemicals.

HEADS TABLE: N+N HEAD (*)			
With regulator discs in position:	DELIVERY OF THE HEAD (litres/hour) with power take off (PTO) at 540 RPM		
	Operating pressure $\mathrm{kg} / \mathrm{cm}^{2}$		
	1,5	2	2,5
1	81	86	90
2	100	109	114
3	133	148	157
4	176	190	200
5	231	248	267
6	257	274	290
7	380	400	437
8	448	485	524
9	562	606	655
10	640	702	757
11	842	923	985
12	1206	1312	1407
13	1608	1777	1936
14	2052	2391	2603
15	2910	3248	3492

(*) indicative values provided ONLY as an example. For the machine adjustments always refer to the "Operation and maintenance" manual of the distribution device

1st CALCULATE	2nd DEFINE	$\begin{gathered} \text { 3rd } \\ \text { OBTAIN } \end{gathered}$	4th DEFINE	$\begin{gathered} \text { 5th } \\ \text { DERIVE } \end{gathered}$
WORKING WIDTH	TRAVEL SPEED	HOURLY WORKED SURFACE	LITRES PER HECTARE	HOURLY DELIVERY CAPACITYE
Inter-row distance in metres times the number of rows covered at every pass	relative to the gear selected to carry out the treatment in km/h	hectares treated per hour due to the width work, multiplied by the progress speed, : 10	quantity of water selected per hectare for the treatment, expressed in litres	quantity in litres that the machine must deliver in an hour in order to carry out the wanted treatment
L (m)	V (km/h)	$\mathrm{S}=\mathrm{LxV}$:10 (ha/h)	W (I/ha)	Q=SxW (l/h)

6th ADJUST THE SPRAYER

From the delivery capacity Table, provided with every head, in correspondence with the selected operating pressure search for the hourly delivery capacity value derived (5). Note the corresponding number of the regulator disc, marked from 1 to 15
If the value of the hourly delivery capacity (5) doesn't coincide with those indicated by the Table one must refer to the one closest. The new value derived, divided by the surface worked hourly (3) will provide the effective quantity of litres delivered per hectare ' Q.
provide the effective quantity of litres delivered per hectare Q.
Should an appreciable difference result from the value of the delivery capacity calculated and that indicated by the table, adapt the operating pressure by 1 or 2 tenths of atmosphere by turning the knob of the pressure regulator.
POSITION ALL THE REGULATOR DISCS OF THE SPRAYER ON THE NUMBER DERIVED AND CARRY OUT THE TREATMENT WITH THE CORRESPONDING OPERATING PRESSURE INDICATED BY THE TABLE.

7TH PROPORTION THE MIXTURE

The quantity of chemical to be used must be calculated according to the surface to be treated Independently of the type of equipment or litres of water utilised, every hectare of the crop always necessitates the same quantity of product. ON EVERY HECTARE OF CROP THE SAME QUANTITY OF PRODUCT MUST BE USED, AS WAS DISTRIBUTED DURING THE TREATMENTS CARRIED OUT IN THE PREVIOUS SEASONS, MIXING IT WITH THE VOLUME OF WATER CHOSEN FOR THE TREATMENT.
In order to rationalise the intervention, remember that for the "quantity distributed per hectare in the previous seasons" one must consider only that part of product actually distributed on the crop. If it refers to treatments carried out by means of the normal volume system, the dose of agro-chemical per hectare can be reduced.

The technical principle concerning ATOMIZING AND PNEUMATIC TRANSPORTATION OF THE AGROCHEMICAL MIXTURE WITH ADJUSTMENT OF THE FLOW CAPACITY, utilised on our sprayers, considerably enhances the traditional coverage capabilities of the water and ensures, with very limited deployment volumes, interventions that are very high in terms of quality, economically advantageous and responding to the current mandatory needs to protect the environment against pollution.

To these positive operative conditions one must add the possibility of carrying out treatments whose mixture volume to be provided per hectare is defined by the user according to needs and capacity

Necessarily, in order to implement interventions of this type, before using the sprayers these must be suitably adjusted. This operation is in itself quite simple, but it can only be carried out after having defined several parameters linked to the structural specifications of the crop to which the treatment must be applied and the corresponding results to be attained.

From this viewpoint, therefore, it is mandatory to specify the parameters applicable and above all, which modalities are to be applied in order to define them

Width of the treatment " L " (m)

This measurement implies the width of the ground that encompasses the number of rows treated at every pass.

In order to facilitate the definition of these parameters, one must take into account that each row occupies a ground strip whose width is equal to the distance existing between the rows.
In fact, in a crop with inter-rows of 3 metres, each row occupies a strip of ground 3 metres-wide: 1.5 on the one side and 1.5 on the other. If with every pass 2 rows are covered, corresponding to 2 strips of ground, the virtual width of the treatment will amount to 6 metres.

The WIDTH OF THE TREATMENT, therefore, IS OBTAINED BY MULTIPLYING THE NUMBER OF ROWS TREATED WITH EVERY PASS BY THE DISTANCE IN METRES EXISTING BETWEEN THE CROP'S ROWS. The calculation will possibly have to take the half rows into consideration too.

The definition of these parameters is very simple since it is drawn from the defined and known dimensions that characterise the crop on which the intervention is required.

When distribution devices (heads) are used on a "full field with lateral spraying" (tobacco cannon jets or similar) the width in metres covered by the spraying must be taken into consideration.

To illustrate this, a synthetic diagram is proposed with one of the various coverage possibilities by the standard distribution devices available. The graphic indications represent the different field conditions experienced and can contribute to a better understanding of the modalities by which to define these parameters, according to the specific characteristics of every intervention. It must be emphasised tha various possibilities proposed depend on the crops plant system, on the structure and development of the plants, on the ground configuration and on the power of the tractor available.

ROWS COVERED AT EVERY PASS

PRELIMINARY CONSIDERATION: "D" indicates the distance in metres between the crop's rows This measurement is equal to the width of the strip of ground occupied by every row. As an example hypothesis, " D " is set at 3 metres.

0.5 = HALF ROW

 $L=D \times 0.5=3 \times 0.5=1.5$ metresThe width corresponds to a strip of ground that is half the distance between the rows. It requires 2 passes for every row.

1 = ONE ROW

$$
\mathrm{L}=\mathrm{D} \times 1=3 \times 1=3 \text { metres }
$$

The width corresponds to a strip of ground which is as wide as the distance between the rows. It requires a pass for every row

VERTICAL ADJUSTMENT

The airflow must cover the whole of the surface to be treated, taking care that the target area is not missed.

Vertically trim the lateral motion to eliminate the possible overspray.

If necessary, close some of the diffuser should the coverage angle be too wide.

HORIZONTAL ADJUSTMENT

The air flow must cover the whole surface to be treated without straying from the target area.

In order to better penetrate the foliage, the air flow must strike the crop's rows at an angle.

Trim the angle of the sprayheads slightly towards the rear in order not to strike the crop perpendicularly.
The air flow must cover the whole surface to

After having gained sufficient operative experience, the concentration of mixtures could be partially modified to gain and maximize all the advantages offered by a low-volume sprayer.

In fact, differing from what was initially indicated, the quantity calculated per hectare can be further reduced to 75% of that envisaged, without jeopardising the results of the intervention.
This reduction of the dosage is suggested to the agricultural operators who, with a proper understanding of the functional principles of this technique and its practical advantages and possibilities, will want to maximise the whole activity in the most convenient of ways. In order to clear the perplexity and fears that this new operative condition could give rise to, it is sufficient to consider the different coverage modalities respectively afforded by the treatment-applying systems.
Even when an adequate operative experience has been gained, it is in any case advisable to reduce the quantity of agro-chemicals with great care. It is always suggested that several tests on a limited piece of ground be carried out, initially reducing the quantity of agro-chemicals by $5 \div 10 \%$, to then gradually increase this percentage.

- When one operates with traditional, normal-volume machines, the quantity of mixture prepared for the intervention is utilised in an uneconomical way and without evaluating the possible negative consequences on the environment. In fact, by utilising this coverage technique, one finds that on average 25% of the mixture employed is lost, caused by its dripping on the ground and through dispersion due to over spray. It is evident therefore that, even in the traditional system, the treatment is carried out by distributing over the crop's surface only 75% of the mixture volume prepared, which corresponds to a quantity of active principle reduced by about 25% as related to that initially envisaged. The need for preparing a mixture volume exceeding the actual requirements of the crop derives solely from the coverage technique which, in order to distribute the vegetation with the necessary dose, in other words 75% of that quantity, it must inevitably disperse the remaining 25%. "Of the 3 kg . of medicinal preparation per hectare indicated in the example therefore, only 2,250 grams (75%) will actually be sprayed on the plants, whereas the other 750 grams (25%) will be dispersed in the environment".
- A correct use of our low-volume pneumatic equipment, on the other hand, will eliminate this negative aspect and the deriving consequences. The essential characteristic of a low volume treatment is that of carrying out interventions without the mixture dripping. Should this happen it means that the spray atomiser is not being used to its utmost operative possibilities. The wide range of distribution devices that can be deployed on our machines also eliminate this dispersion effect. In fact, they make it possible to perform "focused" and "specific" treatments since the air flow can be adapted to the configuration of the crop's plants and distribution of the mixture, by utilising an appropriate distribution device (head), differentiated to match the actual needs of the different parts of the same plant. Since this affords an obvious economic advantage, the intervention system proposed allows the reduction of the dosage normally envisaged per hectare, amounting to the 25% which gets lost by "dripping" and by "overspray", without compromising the effectiveness of the coverage. The usefulness of this kind of operation is confirmed by the verification that both systems apply the coverage on the vegetation surface for 75% of the dose initially indicated.
"By reducing the 3 kg of agro-chemical per hectare, as considered in the example, by 25%, the mixture will have to be prepared with a dose of 2,250 GRAMS which will be completely distributed on the plants.
$L=D \times 2=3 \times 2=6$ metres
The width corresponds to a strip of ground which is as wide as double the distance between the rows It requires a pass on a row, skipping the next, and so on.

3 =THREEROWS

$\mathrm{L}=\mathrm{D} \times 3=3 \times 3=9$ metres
The width corresponds to a strip of ground which is 3 times as wide as the distance between the rows. It requires a pass on a row, skipping the next two.

$4=$ FOURROWS L= D $\times 4=3 \times 4=12$ metres
The width corresponds to a strip of ground which is 4 times as wide as the distance between the rows. It requires a pass on a row, skipping the next three

FULL LATERAL FIELD

> 14
> \rightarrow

The virtual width corresponds to the distance in metres actually covered by the spray. Whoever utilises a sprayer for the first time is advised to determine the "width of the treatment" after having verified its coverage capability in practical terms. During the course of the season in fact, this width can vary according to the time of treatment: in certain crops the rows covered at the start of the growth cycle are more numerous than those covered during the period of maximum vegetation growth.

2 Travel speed "V"(km/h)

This represents the speed of the tractor-spray atomiser operative unit, during the carrying out of the treatment.

This must be practically defined in field, adapting it to the conditions of the ground, the crop planting system and the type of spray atomiser deployed. Furthermore, it is indispensable to select a gear matching the functional specifications of the machine. Normally, a speed lower than that utilised with traditional normal-volume equipment, will improve the quality and effectiveness of the treatment without reducing the operative capability.

THE TRAVEL SPEED IN km/h IS DERIVED FROM THOSE SPECIFIED FOR EVERY TRACTOR IN CORRESPONDENCEWITHTHEGEARSELECTEDFORTHETREATMENT.

7 Proportioning of the mixture

The quantity of agro-chemical to be employed in the preparation of the mixture must be calculated only according to the surface to be treated: INDEPENDENTLY OF THE TYPE OF EQUIPMENT USED OR OF THE LITRES OF WATER USED, EVERY HECTARE OFTHECROP ALWAYSNECESSITATESTHESAMEQUANTITY OFPRODUCTBEINGUSED.

Considering that the surface of the crop on which the treatment is applied is normally always the same, it follows that in relation to the timing of the treatment, also the quantity of product to be utilised will not change and is equal to that utilised for the interventions carried out in the preceding seasons. The quantities of agro-chemicals needed per hectare therefore, constitute a value that can be considered constant and always known by whoever carries out the intervention.

By using our sprayers, the product necessary for the treatment can be distributed (see Point 4) with a greatly reduced volume of water if compared with that used with traditional, normal volume equipment This implies that the preparation of concentrated mixtures and the concentration will be inversely proportional to the quantity of water decided upon for the intervention

The following is an explanatory example for the preparation of the mixture, with the hypothesis of applying the treatment to a hectare of crop on which 3 kg of product were always used:

TRADITIONAL, NORMAL VOLUME MACHINE

with 3 kg of product in 1000 litres $/ \mathrm{ha}=300 \mathrm{~g}$ of product for every 100 litres of water

LOW-VOLUME PNEUMATIC SPRAYER

with 3 kg of product in 400 litres $/ \mathrm{ha}=750 \mathrm{~g}$ of product for every 100 litres of water with 3 kg of product in 300 litres / ha $=1000 \mathrm{~g}$ of product for every 100 litres of water with 3 kg of product in 200 litres / ha $=1500 \mathrm{~g}$ of product for every 100 litres of wate with 3 kg of product in 100 litres / ha $=3000 \mathrm{~g}$ of product for every 100 litres of wate

For information purposes it is specified that, if the length " ℓ "of a row in metres (m) is known, and by calculating time "t " taken to travel along it in seconds (s), it is possible to verify or calculate the travel speed. It will be sufficient to use the following formula:

$$
v=\ell \times 3,6: \mathrm{t} \quad=(\mathrm{km} / \mathrm{h})
$$

(length of the row in metres, multiply by 3.6 and divide by the progress time in seconds).
It is important to highlight the affect of the travel speed on the performance of the treatment. A correct intervention requires that the rows of vegetation should be penetrated by the mixture mist through to the centre (in this case the treatment will be applied to either side of the row), or by spraying the whole vegetation right through, thus penetrating completely through to the other side of the crop's row.

CORRECT MIXTURE PENETRATION

If, after having passed through the vegetation, the mixture mist overshoots the row's profile excessively, some of the product will fall to the ground, thus polluting it.

EXCESSIVE PENETRATION OF THE MIXTURE

FALLING OUT ON THE GROUND
This drawback can be eliminated by increasing the travel speed so as to reduce the airflow's penetration time within the row and to lower excessive overshooting of the mixture to within the required limits in order to avoid product dispersion. Alternatively, by reducing the travel speed, one can increase the airflow's penetration capacity so that the mixture mist can reach and penetrate the vegetation of the adjacent row.

CORRECT MIXTURE PENETRATION
 HALF ROW ON EITHER SIDE FOR THE EXTERNAL ROWS

Low volume sprayers

3 Work surface covered hourly " S " (ha/h)
It is the ground surface that encompasses the crop
covered within one hour of actual treatment.
Dead times' for the preparation, reloading, transfer and others are not taken into consideration.
Quite easy to determine, this parameter is obtained through the two previously drawn. It is of fundamental importance since only by knowing the exact work surface covered hourly, it is possible to calculate the quantity of water that the sprayer can spray in an hour to carry out the treatment with the litres selected per hectare. Summarising, in order to define how many hectares of ground can be worked in an hour, it is sufficient to apply the following formula:

$$
\text { S = L x V : } 10 \text { = (ha/h) }
$$

BY MULTIPLYING THE WIDTH OF THE TREATMENT IN METRES "L", BY THE TRAVEL SPEED "V"IN KILOMETRES/HOUR, DIVIDEDBYTEN,THESURFACEWORKEDPERHOURISOBTAINED.

It is evident that, by keeping the WIDTH OF THE TREATMENT "L" for the treatment unchanged, the SURFACE WORKED PER HOUR "S" will vary with the increase or reduction of the speed. On a crop with inter-rows distance "D" of 3 metres, where with every pass 2 rows are covered, WIDTH OF THE TREATMENT of 6 metres $(3 \mathrm{mx} 2)$ remains unchanged, whereas the SURFACE WORKED PER HOUR changes with the changing of the TRAVEL SPEED " V ", selected for the treatment in point:

$$
\begin{array}{ll}
\text { if } V=4 \mathrm{~km} / \mathrm{h} & S=6 \times 4: 10=2,4 \mathrm{ha} / \mathrm{h} \text { worked } \\
\text { if } V=4,5 \mathrm{~km} / \mathrm{h} & S=6 \times 4,5: 10=2,7 \mathrm{ha} / \mathrm{h} \text { worked } \\
\text { if } V=5 \mathrm{~km} / \mathrm{h} & S=6 \times 5: 10=3 \quad \mathrm{ha} / \mathrm{h} \text { worked }
\end{array}
$$

4 Litres to be delivered per hectare "W" (I/ha)
After having defined the previous parameters it is necessary to establish how many litres of water must be used in order to treat one hectare.

This selection, which is only limited to the condition that it should ensure crop coverage, is at the user's discretion and operative capabilities. As far as this aspect is concerned the deployment selections can satisfy any requirement, even the most demanding.

Normally a rational use of our sprayers requires $1 / 4,1 / 5$ and, if so wished, even $1 / 10$ of the volumes necessary for a traditional normal-volume machine.

As an indication, for one hectare of normal orchard, quantities of around 300/500 litres can be used, whereas for a vineyard it is possible to descend to volumes of 100/200 litres. Obviously, these data represent an average of the values normally used. The selection of volumes to be used per hectare, as a matter of fact, depends on the structure of the trees, the extent of their foliage and the climatic conditions prevailing at the time of intervention. In the presence of high environmental temperatures, it is not advisable to select excessively low volumes.

Finally and should this become necessary, with our sprayers it is also possible to apply selections that afford normal-volume treatments.

5 Hourly delivery capacity "Q" (I/h)

It represents the amount in litres of water that the sprayer must spray in an hour in order to carry out the treatment with the volume of mixture defined per hectare "W".

With the indications provided thus far, this parameter has already been substantially defined.
Bymultiplying theHECTARESWORKEDINANHOUR "S"(point3)bytheLITRESDEFINEDPERHECTARE "W" (point 4) the HOURLY DELIVERY CAPACITY "Q" (I/h) is obtained, according to which the sprayer will be adjusted.

$$
Q=S \times W=(I / h)
$$

6 Adjustment of the sprayer

Before continuing with these information notes, it would be appropriate to state that all our sprayers are equipped with an adjustment system made up of a PRESSURE REGULATOR and by ROTATING DISCS with 15 calibrated holes through which it is possible to deliver the pre-set quantities of mixture, at a predefined pressure. This technical device guarantees treatments with delivery capacity values corresponding to those specified.

The REGULATOR allows the manual adjustment of the sprayer so as to obtain the pressure value with which it is intended to carry out the treatment, normally between 1.2 and 2.5 atmospheres.

By rotating the specific knob in a clockwise direction:

- the operating pressure is increased
- the delivery flow utilised for the treatment is increased

Alternatively, by rotating the specific knob in an anticlockwise direction:

- the operating pressure is reduced
- the delivery flow utilised for the treatment is reduced.

